ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ОТДЕЛ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

141980 Московская область, г. Дубна Телефон : (49621) 65794, (49621) 63311 Факс: (49621) 65794

E-mail:buchnev@ jinr.ru

Утверждаю Начальник ЛРК ОРБ

В.Н.Бучнев 2013 г.

ПРОТОКОЛ

ядерны

измерений мощности амбиентного эквивалента дозы фотонного излучения на поверхностях объектов досмотра после использования переносного комплекса ДВИН-1 (HT.425199.001) на основе технологии меченых нейтронов для обнаружения взрывчатых веществ.

Измерения выполнены в соответствии с областью аккредитации Лаборатории радиационного контроля (ЛРК) Отдела радиационной безопасности , ИКИО аккредитованной Ростехрегулировании В зарегистрированной В Государственном реестре ПОД $N_{\underline{0}}$ САРК RU.0001.441319.

Цель измерений

Контроль радиационной безопасности объектов досмотра из-за активационного излучения, возникающего после облучения быстрыми нейтронами в результате использования комплекса ДВИН-1.

Метод измерений

Использование переносного комплекса ДВИН-1 (HT.425199.001) на основе технологии меченых нейтронов для обнаружения взрывчатых веществ осуществлялось в соответствии с указаниями руководства по эксплуатации HT.425199.001 РЭ.

Объект досмотра размещался на дистанции 40 см от стенки модуля досмотра комплекса ДВИН-1 и представлял собой дорожную сумку, в

которую были помещены 27 предметов, относящихся к категориям: продукты питания, бытовая химия, радиоэлектронные приборы, инструменты и предметы быта. 80% максимального габаритного размера объекта досмотра располагалось в области меченых пучков. Схема облучения представлена на рис. 1. Время облучения соответствовало максимальному времени досмотра объекта комплексом ДВИН-1 (в соответствии с паспортом НТ. $425199.001~\Pi\text{C}$) и составляло 10~мин. Интенсивность потока нейтронов от источника составляла не менее $5\times10^7\text{н}\times\text{c}^{-1}$.

Измерения мощности амбиентного эквивалента дозы фотонного излучения выполнялись дозиметром ДКС-АТ-1123 №5149, поверенным метрологической службой ОИЯИ 17.10.2012 г. (метрологическая служба зарегистрирована в реестре аккредитованных метрологических служб под № 0031). Все результаты измерений получены с 20% статистической погрешностью.



Рисунок 1. Схема облучения

Результаты измерений

Мощность амбиентного эквивалента дозы фотонного излучения, мк3в/ч ($\pm 20\%$):

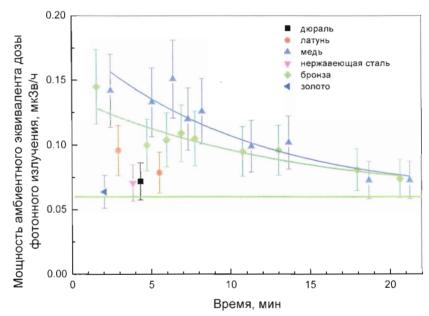
объект досмотра до облучения:
объект досмотра после облучения:
0,07 мкЗв/ч
0,16 мкЗв/ч

– в месте установки объекта досмотра после облучения: 0,10 мк3в/ч

Для характеристики радиационной безопасности объектов досмотра выполнено сравнение значения мощности амбиентного эквивалента дозы фотонного излучения на поверхности облучаемых предметов, входящих в состав объекта досмотра, со значением, полученным в месте установки объекта досмотра после выключения комплекса (0,10 мк3в/ч).

Результаты измерения мощности амбиентного эквивалента дозы фотонного излучения на поверхности облучаемых предметов представлены в таб. 1.

Таблица 1. Измеренные значения мощности амбиентного эквивалента дозы для бытовых предметов:


№ п/п	Объект	После облучения, мк3в/ч (±20%):	
Продукты питания			
1	Пшеничная крупа (600 г)	0,09	
2	Сахар (1000 г)	0,09	
3	Вода (1 литр)	0,08	
4	Горох (900г)	0,08	
5	Соль каменная (1000г)	0,09	
6	Яблоко	0,08	
7	Банан	0,08	
8	Апельсин	0,07	
Бытовая химия			
9	Чистящее средство (450 г)	0,14	
10	Сода (500 г)	0,12	
11	Зубная паста («Фтородент»)	0,12	
12	Удобрение калий серно-кислый, 1000 г.	0,12	
13	Мел (1 уп)	0,07	
Радиоз	олектронные приборы		
14	Мобильный персональный компьютер	0,10	
15	Батарея свинцово-кислотная	0,12	
Инстр	ументы и предметы быта		
16	Медная проволока	0,19	
17	Серебро (1 г)	0,12	
18	Монеты с гальваническим покрытием желтого цвета	0,08	
19	Монеты с гальваническим покрытием белого цвета	0,11	
20	Ключи связка	0,11	
21	Плоскогубцы (нерж. сталь)	0,11	
22	Полиграфическая продукция	0,11	
23	Электрические разъемы позолоченные	0,10	
24	Пластмассы	0,08	
25	Олово (припой 17 г)	0,10	
26	Алюминий	0,11	
27	Стеклянная пепельница	0,14	

Выполнены измерения мощности амбиентного эквивалента дозы фотонного излучения на поверхности объектов из технических металлов и сплавов. Значение мощности амбиентного эквивалента дозы излучения в месте проведения измерений до и после выключения комплекса составляло 0,06 мкЗв/ч. Результаты представлены в таб. 2.

Зависимость измеренного значения мощности амбиентного эквивалента дозы фотонного излучения для исследуемых объектов из технических металлов и сплавов в зависимости от времени, прошедшего после облучения, представлена на рис. 2.

Таблица 2. Измеренные значения мощности амбиентного эквивалента дозы излучения для объектов из технических металлов и сплавов.

№ п/п	Объект	После облучения, мкЗв/ч (±20%):
1	Дюраль (395 г.)	0,07
2	Латунь (295 г.)	0,10
3	Медь (1355 г.)	0,14
4	Нержавеющая сталь (1020 г.)	0,07
5	Бронза (бериллиевая) (760 г.)	0,14
6	Золото (10 г.)	0,07

Рисунок 2. Зависимость измеренного значения мощности амбиентного эквивалента дозы фотонного излучения для исследуемых объектов из технических металлов и сплавов от времени.

Выволы

- 1. После облучения быстрыми нейтронами, в результате использования комплекса ДВИН-1, для типичного состава объекта досмотра, включающего в себя продукты питания, бытовую химию, радиоэлектронные приборы, инструменты и предметы быта, мощность амбиентного эквивалента дозы фотонного излучения на поверхности не превышает фоновых значений.
- 2. В случае наличия в объекте досмотра материалов из технических металлов и сплавов (бронза, медь) значение амбиентного эквивалента дозы фотонного излучения на поверхности не отличается от значения естественного фона через 20 минут после облучения.
- 3. Наведенная активность в объектах досмотра, при эксплуатации переносного комплекса ДВИН-1 (НТ.425199.001) на основе технологии меченых нейтронов для обнаружения взрывчатых веществ, используемого в соответствии с руководством по эксплуатации НТ.425199.001 РЭ, не представляет радиационной опасности.

Измерения провел нач. группы №1 ОРБ ОИЯИ

Из Шеголев В.Ю.